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Abstract 

1 
I 

Prior information for the stationary sea surface topography (SST) may be 
needed in altimetric solutions that intend to simultaneously improve the  
gravity field and determine the SST. For this purpose the oceanographically 
derived SST estimates are represented by a spherical harmonic expansion. 
The spherical harmonic coefficients are computed from a least squares 
adjustment of the da ta  covering the  majority of the oceanic regions of the  
world. Several tests are made to determine the optimum maximum degree of 
solution and the best configuration of the  geometry of the data in order to 
obtain a solution that fits the data and also provides a good spectral 
representation of the SST. 
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Introduction. 

One of the main problems in marine geodesy is the determination of the  
geoid from the sea surface heights that are computed from satellite altimetric 
observations. In order to do that independent estimates of the stationary and 
t i m e  variable sea surface topography (SST) need to be provided. Time 
variations of SST can be computed in a rather straightforward way by 
analysing the overlapping tracks during the repeat era of a satellite altimetric 
mission (Cheney et al., 1983). These variations can then be removed from the 
sea surface heights. Alternatively they can be considered as noise during the 
processing of altimeter data with traditional crossover techniques and 
therefore be filtered out from the sea surface heights (e.%. Rowlands, 1981). 
Es t imates  of the stationary SST, on the other hand, that  has an  expected total 
variation of about 2 meters, can be provided by oceanographic methods (e.$. 
Levitus, 1982) using observations of ocean temperature, salinity and oxygen 
content and imposing geostrophic conditions in solving the equations of motion 
for the oceans. 

Stationary SST can also be. computed by traditional geodetic techniques. 
In one such determination (Engelis, 1985) geoid undulations computed from a 
low degree satellite derived gravity field, are subtracted from the sea surface 
heights computed from altimetry. Because of the errors  in the  determination 
of the satellite derived gravity field only the long wavelength part of these 
reduced sea surface heights can represent the stationary SST with some 
degree of confidence. In order to determine this long wavelength SST an 
harmonic analysis of the reduced heights is required. Then a low pass 
filtering is performed to retain only the low degree coefficients that have a 
favourable signal to noise ratio. 

Recently there have been attempts to simultaneously determine the long 
wavelength S.ST and improve the gravity field of the earth. One such method 
incorporates a low degree (nmax = 10) spherical harmonic model into a general 
dynamic solution for a low degree (nmax = 50) gravity field of the earth, 
currently being attempted at NASA Goddard Space Flight Center. In such a 
solution observations to geodetic satellites, altimeter data and terrestrial 
gravity anomalies are used. In an alternative method being proposed by 
Engelis (1987), altimeter observations are used in a combined solution to 
reduce the radial orbit error,  improve the geoid and determine the stationary 
SST. 

The effectiveness of all geodetic techniques to determine the SST is 
subject to the accurate representation of the spectral content of the SST 
itself, or, in other words, subject to the correct implementation of the  
spherical harmonic models that are  used. Particularly for the  last method, 
where  apriori SST information by wavelength (Le. degree variances) is 
needed, it is important that  some estimates of the spectral behavior of SST is 
available. Such estimates have been provided in the past by Engelis (1985) 
who has used the Levitus data to estimate harmonic coefficients and their 
degree variances. In that estimation the orthogonality principle assuming data 
all over the sphere w a s  used. In the present investigation this determination 
is reexamined since the SST is not a complete function on the sphere but is 
only defined in oceanic areas. Therefore, consideration of the SST as  a global 
function introduces problems, the most important of which is that, t he  
resulting harmonic coefficients have a lower power since they are forced to 
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also f i t  the land regions which are filled with SST values that are  traditionally 
, considered to be zeroes. In the present analysis the Levitus data, only in the 

ocean areas, will be used to determine spherical harmonic coefficients. These 
coefficients can provide, hopefully, the best reference values needed for the 
combined solutions. A more general purpose of this analysis is to examine the  
problems involved with the spectral decomposition of data that are  not globally 
distributed on the sphere. 

The Levitus SST. 

In oceanographic methods to determine the stationary SST, temperature, 
salinity and disolved oxygen content of t he  oceans are  used to determine 
pressure and water density, which in turn are used to solve the geostrophic 
equations of motion in the oceans, In order to do that a reference 
equipotential surface (surface of no motion), which ideally can be the geoid, 
must be used. Due to the inability to use an estimate of the geoid, a deep 
surface is defined to be a surface of no motion. Then solution of t h e  
equations of motion provides the mean annual anomaly of t h e  geopotential 
thickness of the layer between that surface and the ocean surface. 

The most recent determination of such a dynamic SST is made by Levitus 
(1982) who used data from the National Oceanographic Data Center. A first 
analysis of the data, made by Levitus, indicated several problems. The most 
important problem was regional biases in the da ta  and lack of data in 
extended regions. Moreover there w e r e  temporal representation problems in 
t h e  data since observations were  not synoptic but scattered with respect to 
time (with the exception of a few limited areas) and so,'the results cannot in a 
strict sense be considered a t rue long term average. 

After the initial stability and statistical checks to eliminate spurious 
observations, averages of data in 1 " x l "  blocks were created, In order to 
overcome biases and lack of data a smoothing operation was performed. This  
smoothing consisted of a weighted average operation in which a Gaussian type 
filter was used a s  a weighting operator. The radii of the Gaussian filter 
ranged from 1540 km to 770 km depending on the region. As a result, any 
signal with wavelengths less than 800 k m  was eliminated while wavelengths 
between 800 km and 3000 km were affected with changes in the amplitudes of 
the signal. For example wavelengths of 1000 km had a reduction in amplitude 
of at least 50% (Levitus, 1982, Figure 11). The minimum wavelengths of 800 k m  
roughly correspond to a maximum degree 20 in a spherical harmonic expansion. 
Levitus considers that the resulting large scale features are representative of 
the real ocean, although it is expected that some local differences can occur 
because of interannual variability. This smoothed data set was used to 
compute the annual mean anomaly of geopotential thickness of several layers 
corresponding to different deep surfaces considered to be surfaces of no 
motion. 

The dynamic topography that is  used in the present analysis is  t he  one 
wi th  respect to a 2250 db surface. This  data set consists of 33856 1"x l '  mean 
values in the ocean areas of the world. Their spatial distribution is shown in 
Figure 1 of Appendix A. A first analysis of this data set has  indicated some 
outliers in the  w e s t  equatorial region of the Pacific ocean. After  these values 
are  rejected, the weighted mean value of the SST set is computed to be 2.02 
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meters. This mean is removed, since for geodetic applications any such t e r m s  
are absorbed by the mean earth ellipsoid that is used to reference the  geoid. 
Analysis of the centered quantities indicates that the SST estimates range 
from -2.40 meters at the southernmost latitudes close to Antartica, to about 1 
meter in the northern Pacific. A notable exception to the  above range has 
been found in the  Mediterrannean sea where there is a sparse coverage of 82 
l 'x l '  values all of them having magnitudes smaller than -3 meters. 
Additionally in the oceanic regions above 70" a s  well as in the region between 
Greenland and Scandinavia there are 3134 SST estimates wi th  a mean value of 
-1.80 m e t e r s  and a very small, almost latitudinal variation. These values differ 
from neighboring values in the North Atlantic region a s  well a s  values in the  
Northern Pacific by a s  much a s  1 mete r .  

This original data set  with the mean value removed is the one that was 
used in Engelis (1985). In expanding the SST into spherical harmonics one is 
interested in determining a set of coefficients that best represent the oceanic 
regions within latitude limits that are also attained by satellite altimetry. 
Therefore, it was decided (Rapp, 1985, Appendix B) to reject all the  3134 
values in the northei-nmost latitudes. Furthermore, the Levitus estimates in 
the Mediterrannean sea were replaced by estimates from a map by Lisitzin 
(Lisitzin 1974, p.153) that was given with respect to a 4000 db surface. In 
order to put the Lisitzin estimates into the same reference system as  the 
Levitus set, their mean value was removed and the global mean value of the 
Levitus set was  added. 

In the present investigation four sets of SST estimates are used in order 
to see w h a t  is the  effect of particular regions on the global analysis of SST. 
These sets are  the following. 

1. Original Levitus data set centered around its mean value of 2.02 meters 
and containing 33856 estimates with an RMS value of 80.3 cm (SET1). 

2. Same as  SET1 but augmented by the Lisitzin estimates in the 
Mediterrannean sea, centered around its mean value of 2.02 meters and 
containing 34056 estimates with an RMS value of 78.8 cm (SET2). 

3. Same as  SET2 but without the 3134 estimates in the  northernmost 
latitudes. There is a total of 30922 estimates with their mean value of 
2.01 meters removed and an RMS value of 62.4 cm (SETS). 

4. Same as  SET3 but with no data in t h e  Mediterrannean sea. There  are  
30640 estimates wi th  their mean value of 2.03 meters removed and an 
RMS value of 62.4 cm (SET4). 

The spatial distribution of all four data sets is shown in Figures 1-4 of 
Appendix A. 
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Harmonic Analysis of a Function on a Sphere. 

A square integrable analytical function f ( + , h )  defined ’on a unit sphere 
-n/Z<+<n/Z and 04A4Zx can be expanded in a series of surface spherical 
harmonics 

where 

and 

c a m ,  g a m  are  the fully normalized spherical harmonic coefficients of the 
function f(4,A) and Pjm(sin4) a re  the fully normalized associated Legendre 
functions of the first kind, such that 

1 i f  B = i ,  m=j, a=b 
0 otherwise 

1 -a -b - 
477 YamYijdu = (4 )  

Using the orthogonality principle that is expressed by equation ( 4 )  the 
spherical harmonic coefficients can be derived from 

These coefficients a re  independent and they form a basis of the function on 
the sphere. In terms of linear algebra, equation (1) is the cpectral 
decomposition of the function f (b ,A) ,  Yjm are  the eigenfunctions and Cgm are  
the eigenvalues of the function. 

When discrete point realizations of t h e  function are  given on the sphere 
in an  equiangular gridded form, with grid intervals A + ,  Ah along latitude and 
longitude respectively, then the upper limit of equation (1) changes from 
infinity to some maximum degree amax that corresponds to the Nyquist 
frequency of the sampled set and is equal to x/Ah.  Furthermore, equation ( 5 )  
becomes 

where ui is  the finite surface element and is  equal to 

u i  = Ah(s in (+ i+A+) - s in+ i  >’ 

4 

( 7 )  



In equation (6), L is the  number of gridded samples along a parallel and is 
equal to BmaX. The orthogonality principle is still valid and independent 
coefficients can be obtained up to amax. These coefficients are insensitive to 
the maximum degree of solution as  long as this is smaller than amax since 
folding of frequencies is prevented by the orthogonality of the  harmonics. 
Attempts to determine coefficients of higher degrees result into aliased 
estimates that are  fully correlated with coefficients of degrees lower than 
a m a x *  

When the function f(+,A) is sampled in the form of equiangular area means, 
things become a little more complicated. Equation (1) becomes 

o r ,  i n  an expanded form 

where  IC,, IS,,,, IPj, are  the integrated cosines and sines of order m and the  
integrated associated Legendre functions, respectively. The maximum degree 
of expansion is again specified by the relationship amax = n/AX w h e r e  AX is 
now the size of the block. 

The problem in expanding area means into spherical harmonics is that the  
orthogonality principle is not valid anymore. As a matter of fact deviations 
from the orthogonality principle are  .a function of the block size. These 
deviations tend to zero a s  the block size tends to zero. For a given block 
size deviations from the orthogonality principle increase with increasing 
degree. Approximations to the orthogonality principle and therefore estimates 
of the spherical harmonic coefficients can be obtained by introducing the so 
called desmoothing factors (Colombo, 1981, Rapp, 1986). Then equation ( 5 )  
becomes 

where q e  can be either the Pellinen operator or an optimum quadrature weight 
defined by Colombo (1981). With the  incorporation of the desmoothing factor 
errors  due to the finite size of the block and errors arising from the 
dampening of higher frequencies because of the  averaging to generate the 
mean values, are  reduced. 

Spherical harmonic coefficients computed using equation (10) are not 
independent any more due to the approximations involved in the  equation 
itself. Their correlations though are minimal. For the efficient evaluation of 
(IO) optimum procedures have been developed and can be found in Rapp 
(1986). 
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Spherical harmonic coefficients representing the square integrable 
analytical function f(4,X) can also be computed by a least squares adjustment 
of the sampled values of the function. 'Equations (1) or (8) can be used for 
that purpose as observation equations depending on whether the sampling is 
in a form of point values or area means. In a least squares solution 
individual data errors can be taken into account for weithting purposes, or all 
weights may be set equal to one. In the latter case and for point values, the 
formulation and the results are identical to the ones of equation (6) since the  
orthogonality principle is valid and so the normal matrix becomes diagonal. 
When mean values are used, with equal weights, the normal matrix is 
dominantly diagonal and the results and formulation are very similiar to the  
ones of equation (10) but not identical. In either formulation the coefficients 
can be considered a s  independent and insensitive to the maximum degree of 
solution. Furthermore, when the  data sampling implies a Nyquist frequency 
that is greater that the  maximum frequency existing in the function data 
(when the function is band limited), all coefficients corresponding to 
frequencies between these two frequencies will be effectively zero. Obviously, 
after the coefficients are  estimated, a subset of t h e m  can be used to compute 
a long wavelength approximation of the  function (i.e. a low pass filtering) or, 
equally well, high degree variations (Le. a high pass filtering). Finally the 
spectrum of the  function can be computed by computing the degree variances 
a s  follows 

I 

When the function f(4,X) is not globally defined on the sphere but only on 
a portion of it, then it is not analytical on the sphere anymore since its 
spatial derivatives are discontinuous on the  boundaries. Consequently i t  
cannot be expanded into .a series of surface spherical harmonics that are  
orthogonal, since the  orthogonality principle is not valid anymore. Ideally, 
such a function can be spectrally decomposed, if one is able to compute the 
eigenfunctions and eigenvalues of the function over the  domain where the 
function is defined. When the boundaries though are  variable, a s  it happens 
in most geodetic applications for which da ta  are not sampled globally (e.g. 
satellite altimetry ) such a computation becomes nearly impossible. 
Furthermore, it has been traditional for geodesists to work with spherical 
harmonics since all the  geodetic quantities of interest can be analysed into 
spherical harmonics. 

Based on the above, one can expand f(4,A) into spherical harmonics, only 
w i t h  the understanding that such an expansion is nothing else than a 
polynomial fit,  and that the only property of the  harmonic coefficients is  that  
they reproduce the function. To compute the coefficients of equations (1) or 
(9), depending on the nature of the available sampling, one cannot use 
equations ( 6 )  or (10) anymore. The  only way these coefficients can be 
computed is through a least squares f i t  of the data using (1) or (9)  a s  
observation equations. A similiar situation arises when a function that is 
globally defined on the sphere is not globally sampled (e.g. terrestrial gravity 
anomalies). 

There are  several issues tha t  need to be addressed during such a 
computation. First of all and most important, the coefficients themselves are 
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not independent but correlated. This  is expected since the normal matrix is 
not diagonal or even dominantly diagonal. Therefore, no long wavelength 
approximation to the  function can be computed and equation (11) cannot really 
be used to compute the spectrum. Furthermore, the Nyquist frequency cannot 
be defined, based on the sampling of the function, in the sense amax = n/Ah 
since the discontinuities a t  the  boundaries introduce artificial energies a t  
frequencies that are  functions of the variability of the boundaries. This  
effect is the so called Gibbs phenomenon, which is very well known in the  
theory of Fourier series. So even if the  function is band limited with a 
maximum frequency 4 less than the maximum frequency amax that  is implied by 
the data, if one tries to solve up to d, , ,  then the coefficients between a and 
i,,, will not be zero but will have substantial magnitudes. Furthermore, 
considerable folding of these frequencies occurs so that to also affect the 
coefficients of degrees lower than 1. As it will be seen later on, the greater 
the maximum degree of the solution is, the larger the folding and therefore 
the larger the coefficients become. Of course the correlations between these 
coefficients aldo increase in such a way that, when they are  used to 
reproduce the function, they provide a perfect f i t ,  

From this discussion it is obvious that the computed coefficients are not 
unique but they depend on the maximum degree of solution. So, if a band 
limited function is analyzed, or smoothing has been applied to the data, it is 
important that some prior information about the effective minimum wavelengths 
(and therefore the  maximum degree of solution) be available. 

In analyzing an incomplete data set on the sphere, either because of 
definition or because of incomplete sampling, the geometry of the data 
distribution is very important, and is basically the factor for the deviation of 
the  harmonics from orthogonality. As will be seen later on, a very small 
change in the  data distribution can result in substantial changes in the 
computed coefficients even when the s a m e  set of coefficients is solved for (Le. 
same maximum degree of solution). Unfortunately there is no known method 
that can e s t i m a t e  what the  effect of a gap in the data on the computed 
coefficients can be. The only information that can be obtained is how a 
particular gap of data affects the correlations of the  coefficients. This  can be 
done by simply computing the normal matrix for the gap. Doing that 
repeatedly, for several gaps, one can possibly identify areas to which a 
solution is very sensitive and areas that contribute a little to the solution. 

Determination of t h e  SST SBherical Harmonic Coefficients. 

In determining the Levitus SST harmonic coefficients Engelis ( 1985) has 
adopted the definition that the SST is a global function that takes values both 
on land and oceans, with the values on land being identically equal to zero. 
In that definition it was required that the mean value of the SST is zero as 
sampled globally in the oceanic areas of the world. The SST estimates that 
were used in such an ivestigation were the original Levitus values that 
correspond to SET1. These estimates were considered to be point values. 
Then, spherical harmonic coefficients were computed using equation (6). The  
s a m e  analysis was repeated in Rapp (1985) where though SET3 was used and 
the values were  considered to be mean values. Equation (10) was then used 
to compute the SST coefficients. In both solutions the results were practically 
insensitive to the maximum degree of expansion. The difference between the  
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two sets of coefficients was  found to be on the order of millimeters for most 
of the coefficients with the  exception of the first and second degree terms 
that differ by a couple of centimeters. Furthermore the cumulative power 
computed by either solution (up to emax = 36) was on the order of 40 cm 
which is substantially lower than the RMS values of the Levitus sets SETl and 
SET3 that are on the order of 80.3 and 62.4 cm respectively. This substantial 
reduction w a s  due to the smoothing of the  derived fields that were forced to 
also f i t  the zeroes on land. For the s a m e  reason the RMS f i t  of these fields 
to the data w a s  only on the order of 10-20 cm. 

The s a m e  type of solution is presently repeated by applying a least 
squares f i t  to the Levitus data set augmented by zeroes on land. Several 
solutions up to different maximum harmonic degrees (6,10,20,36) have been 
made for all the four sets of SST described previously, In all the solutions 
equal weights were  used. Equation (9) was  used to form the observation 
equations. The conclusions that can be drawn from the adjustment results are 
identical to the ones drawn from the quadratures solutions described above. 
Again there is no variation of the coefficients among solutions with differeat 
emax for any of the data sets. Furthermore solutions using SETl and SET2 as  
well a s  solutions using SET3 and SET4 are almost identical (differences on the  
order of millimeters). This level of differences w a s  also found in comparing 
these solutions with the corresponding quadratures solutions. In any of these 
least squares fits the standard deviation of each individual coefficient is 2 cm 
while the  correlations were found to be indeed negligible. Any solution up to 
degree 36 has an  RMS power of 40 cm and an  RMS f i t  to the Levitus data of 
11 cm. Solutions up  to degree 10, on the other hand, have an RMS f i t  of 20 
cm'and an RMS power of 37 cm. 

Solutions for the SST harmonic coefficients have also been made by 
considering the SST to be defined only in the oceanic regions. In order to 
examine the sensitivity of the coefficients to the choice of the maximum 
harmonic degree and the geometry of the data distribution, solutions u p  to 8, 
10, 12, 20 and 36 were made using all the four data sets. In establishing 
which set of coefficients is the best, a combination of the following criteria 
was used. 

1. RMS f i t  to the Levitus data to be small. 

2. RMS value implied by the cumulative degree variances to be close to 
the RMS value of the  Levitus SST. 

3. Zero degree coefficient to be very close to zero. 

4. Estimated standard deviations of the  coefficients to be small. 

5. The condition number of the normal matrix to be small, 

This set of criteria was devised as an empirical alternative way to choose the 
set with the smallest possible correlations since examining the normal matrices 
for all these sets w a s  found to be impractical. In particular, the combination 
of the first and second criteria can give a first indication about the level of 
correlations of coefficients. The third criterion can support the first two. 
Indeed, by  definition the  zero degree term has to be zero, so any deviation 
from zero indicates the  level of correlation of the zero degree term with the 
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other coefficients. Finally the fourth criterion is useless by itself but if 
combined with the other criteria and particularly wi th  the last one it can give 
one further input on the choice of the best set of coefficients. 

Examining all the different solutions it was found that the solution up to 
harmonic degree 10 using SET3 performs the best, since it better satisfies all 
the criteria. More specifically the RMS discrepancy from SET3 is 7 cm, the 
RMS value implied by the  degree variances is 62.8 cm (closest to the RMS 
value of SST which is 62.4 cm) and the zero degree t e r m  is -4 cm. ' The 
standard deviations of the coefficients (not scaled by the  aposteriori variance 
of unit weight) range from 2 to 30 cm and the condition number is on the 
order of 5000. These accuracy estimates are  poorer than the corresponding 
ones from solutions to a smaller maximum degree (Le. 8) but only marginally. 
On the contrary they are  much smaller than the standard deviations of higher 
degree solutions. 

The performance of the solutions up to harmonic degree 10 using SET1 
and SET2 is almost comparable. Indeed the first two criteria are satisfied 
since the RMS fits to the corresponding data are  on the order of 9 cm and 
their cumulative power reaches 80 cm. The other criteria though are  not 
satisfied as well since the zero degree terms of the two solutions a re  -25 cm 
and -20 cm respectively and the standard deviations of all the coefficients are 
somehow larger than those of the SET3 solution. The reason for this is that 
the systematically lower values at latitudes greater than 70' introduce a step 
discontinuity in the data. This discontinuity affects primarily the zonals and 
particularly the second degree zonal that is on the order of -55 cm as  
compared to -28 cm of the SET3 solution. The  coefficients computed from 
SET4 perform the worse. Indeed some of these coefficients have magnitudes 
greater than 50 cm giving a cumulative power in excess of 1 meter. Still, the 
RMS discrepancy from the SET4 data set is  7 cm. This indicates that there 
are  high correlations between the coefficients and that the solution is 
extremely sensitive to the geometry of the data distribution. Indeed a small 
change of SET3 (removal of 282 values in the Mediterrannean) makes t h o  
solution (Le. SET4) completely unreliable. 

For all the data sets, any solution with a maximum harmonic degree 
greater than 10 gives coeffi'cients that are completely unreliable, since they 
reach magnitudes close to 1 m e t e r  and standard deviations of several meters, 
while the condition numbers increase dramatically. In all these solutions the 
RMS discrepancies from the Levitus data reduce with increasing amax to reach 
a value of 8 mm for a solution up to degree 36. For this  particular solution 
the cumulative power is  on the order of 8 meters, the  standard deviations are  
on the order of 10-15 meters and the condition number is on the order of lo8. 
Even a solution up to degree 12, although it gives an RMS f i t  of 6 cm to the 
Levitus data, i t  has a cumulative power of 1.35 m and individual standard 
deviations on the order of 50 cm. 

The coefficients of the ocean solution up to degree 10 and based on SET3 
are  shown in Table 1 together with their by degree and cumulative amplitudes. 
Additional sets tha t  are given for comparison are  the ones of the  global 
solution up to degree 10 (Table Z), and the ocean solution up to degree 36 
(Table 3) ,  always based on SET3. All these Tables can be found in Appendix 
B. . Comparing the degree amplitudes between the oceanic and global solutions 
to degree 10 we  observe a higher energy in the oceanic solution, which was 
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expected, but also a s imi l a r  decay in energy with increasing degree. Such a 
behavior and t h e  fact that many of the SST features above degree 10 have 
been filtered out by Levitus suggest t h a t  the spectral content of t h e  SST 
could be approximated by the estimates of Table 1 reasonably well. 

The three sets of coefficients given in t h e  Tables a s  well as t h e  
coefficients of t h e  global SET3 solution to a m a x  = 36, have been used to 
generate SST estimates on a 1"x l "  grid. Contour maps of these estimates 

Appendix A, while a contour map of the Levitus set (SETS) also based on a 
5.~5' is  shown in Figure 5. Examining Figures 6 and 7, that  portray the SST 
from the ocean and global solutions up to degree 10 respectively, it  is seen 
that the primary difference is  that  the former is able to show the broad 
features of the Gulf stream in a much better way than the latter. Examining 
Figures 8 and 9 that  portray the SST features to degree 36 we can see that. 
all features of the SST are  almost identical and have an  excellent agreement to 
t h e  ones of Figure 5. In  a more detailed visual examination the SST in the 
Gulf stream region from the SET3 data set and the four solutions has been 
plotted nnd ' is  shown in Figures 10 through 14 of Appendix. Now one can 
clearly see the inadequacy of the global solutions to reproduce the SST 
features faithfully, although the global solution to degree 36 provides a good 
qualitative approximation. The ocean only solution up to degree 36 is identical 
to the original data. 

I 
based on a 5"x5" grid were then generated and a re  shown in Figures 6-9 of 1 

In  order to create Figures 8 and 13 the SST values on land were replaced 
by the corresponding values of the global solution to atnax = 36, since the land 
values of the ocean solution to 8 , , ,  = 36 a re  on the order of 20 meters and 
no contouring could be made. ,The same values have been used to plot the 
Levitus maps in Figures 5 and 10. Such a substitution m a y  have created 
small distortions close to the coastlines which though are  expected to be 
minor. In any case the values on land and close to the constlines are 
meaningless. 

Conclusions. 

From t h e  analysis made so far it is understood that the deterrxiination of 
spherical harmonics from the oceanic Levitus data set  is very sensitive to  a 
number of factors. I t  is seen that high correlations exist between the 
recovered coefficients that makes them completely unreliable, although they 
provide a good fit to the data. The  best set of coefficients among solutions 
has  been identified (SET3 ocean solution to e m a x  = 10) based on certain 
criteria. Additional solutions which a re  as good (SET1 and SET:! ocean 
solutions) have been found but have not been chosen because they also 
reflect the data in the north polar region and therefore they do not provide 
an equally good f i t  to the ocean areas also attained by altimetry, as the SETS 
solution does. The experience obtained from this investigation indicates that 
although the chosen solution is the best among solutions t h a t  have been 
attempted it may very well tu rn  to be suboptimum. A s  a matter of fact, it 
may be possible that some other slightly different configuration of the data 
and/or solution may very well give better results. Based on the above, one 
could even be inclined to use the coefficients computed from the global 
solutions since such solutions although, not giving very good fits, have very 
well established properties. 
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Sea Surface Topography Maps 
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Spherical Harmonic Coefficients from Different Solutions of thc Levitus SST 
Estimates. Units are  in meters. 
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TABLE 1 

-OCEAN SOLUTION BASED ON LEVITUS SST (SET31 

MAXIMUM DEGREE OF EXPANSION = 10 

RECIPROCAL CONDITION NUMBER = 0.5933-05 
DETERMINANT = 1.633*10.0**505 

NUMBER OF SST VALUES USED = 30922 
DEGREES OF FREEDOM = 30801 
RMS FIT TO LEVITUS DATA = 0.07M 

NUMBER OF UNKNOWNS = 121 

N 

0 
1 
1 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 

- 5  
5 
5 
5 
6 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
7 
7 
8 
8 
8 

M 

0 
0 
1 
0 
1 
2 
0 
1 
2 
3 
0 
1 
2 
3 
4 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 
6 
0 
1 
2 
3 
4 
5 
6 
7 
0 
1 
2 

CNM 

-0.0406 
0.1297 

-0.1766 
-0.2803 
-0.0452 
0.0261 
0.2663 

-0.0194 
0.0507 

-0.0391 
0.1467 
0.0123 
0.0201 
0.0010 

-0.0432 
0.1242 
0.0008 

-0.0129 
-0.0268 
-0.0337 
-0.0114 
0.1536 

-0.0083 
-0.0824 
-0.0199 
-0.0417 
0.0283 
0.0012 

-0.0754 
0.0094 

-0.0807 
-0.0045 
-0.0366 
0.0217 
0.0183 

-0.0037 
0.0057 

-0.0582 
-0.0756 

SNM 

0.0000 
0.0000 
0.0360 
0.0000 
0.0099 
0.0087 
0.0000 

-0.0111 
-0.0141 
0.0295 
0.0000 
0.1053 
0.0368 
0.0239 

-0.0005 
0.0000 
0.1494 
0.0470 
0.0221 

-0.0030 
-0.0029 
0.0000 
0.1252 
0.0286 

-0.0286 
-0.0416 
-0.0143 
0.0017 
0.0000 
0.1012 
0.0223 

-0.0108 
-0.0472 
-0.0257 
0.0138 
0.0006 
0.0000 

-0.0090 
0.0102 

28 

SN 

0.0406 
0.2220 

0.2854 

0.2767 

0.1922 

0.2064 

0.2294 

0.1685 

0.1098 

0.0406 
0.2257 

0.3639 

0 . 4 5 7 2  

0.4959 

0.5372 

0.5841 

0.6080 

0.6178 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

8 3 
8 4 
8 5 
8 6 
8 7 
8 8 
9 0 
9 1 
9 2 
9 3 
9 4 
9 5 
9 6 
9 7 
9 8 
9 9 

10 0 
10 1 
10 2 
10 3 
10 4 
10 5 
10 6 
10 7 
10 8 
10 9 
10 10 

0.0082 
0.0092 
0.0174 

-0.0142 
-0.0027 
-0.0651 
0.0248 

-0.0326 

0.0151 
0.0138 
0.0238 

-0.0079 
-0.0080 
0.0017 
0.0112 
0.0217 

-0.0064 
0.0018 
0.0225 

-0.0007 
0.0205 
0.0029 

-0.0046 
-0.0018 
-0.0018 

0 0195 

-0 0103 

-0.0200 
-0.0281 
-0.0210 
-0.0015 
0.0034 

-0.0063 
0.0000 0.0999 
0.0084 

-0.0399 
-0.0144 
-0.0237 
-0.0189 
0.0021 

29 

0.0026 
0.0048 

-0.0050 
0.0000 0.0602 

-0 0356 
-0.0154 
-0.0154 
-0.0140 
0.0006 
0.0014 
0.0029 

0.0080 
-0.0017 

-0 0004 

0.6258 

0.6287 



TABLE 2 

GLOBAL SOLUTION BASED ON LEVITUS SST (SET31 

N 

0 
1 
1 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
7 
7 
8 
8 
8 

MAXIMUM DEGREE OF EXPANSION = 10 

DETERMINANT = 3.353*10.0**575 

NUMBER OF SST VALUES USED = 64800 
DEGREES OF FREEDOM = 64679 

NUMBER OF UNKNOWNS = 121 
RECIPROCAL CONDITION NUMBER 0.948E-01 

%S FIT TO LEVITUS DATA 

M 

0 
0 
1 
0 
1 
2 
0 
1 
2 
3 
0 
1 
2 
3 
4 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 
6 
0 
1 
2 
3 
4 
5 
6 
7 
0 
1 
2 

CNM 

0.0014 
0.1126 

-0.1419 
-0.2195 
-0.0120 
0.0052 
0.0812 
0.0107 
0.0224 

-0.0397 
0.0338 
0.0363 

-0.0328 
0.0159 
0.0019 

-0.0402 
0.0021 

-0.0089 
-0.0037 
-0.0057 
0.0059 
0.1220 

-0.0078 
-0.0303 
0.0092 

-0.0023 
0.0307 
0.0014 

-0.0889 
0.0095 
0.0242 
0.0005 
0.0123 
0.0120 
0.0068 
0.0015 
0.0318 

-0.0372 
-0.0021 

= 0.19M 

SNM 

0.0000 
0.0000 
0.0239 
0.0000 
0.0184 
0.0275 
0.0000 

-0.0169 
-0.0205 
0.0020 
0.0000 
0.0092 
0.0084 
0.0234 

-0.0173 
0.0000 
0.0153 
0.0456 - 
0.0202 
0.0047 
0.0033 
0.0000 

-0.0145 
-0.0039 
-0.0252 

0.0000 
0.0022 
0.0000 

0.0032 

0.0185 
0.0037 
0.0228 
0.0028 

-0.0065 
0.0139 

-0.0010 
0.0000 

-0.0333 
-0.0080 

SN 

0.0014 
0.1827 

0.2224 

0.0974 

0.0692 

0.0673 

0.1333 

0.1002 

0.0710 

SN(CUM) I 
0.0014 
0.1827 

0.2878 

0.3039 , 

0.3116 

0.3188 

0.3456 

0.3598 

0.3668 

30 



I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

8 3 
8 4 
8 5 
8 6 
8 7 
8 8 
9 0 
9 1 
9 2 
9 3 
9 4 
9 5 
9 6 
9 7 
9 8 
9 9 

10 0 
10 1 
10 2 
10 3 
10 4 
10 5 
10 6 
10 7 
10 8 
10 9 
10 10 

0 0227 
0.0170 

-0.0046 
0.0065 

-0 0017 
0 0046 

-0.0127 
0.0163 
0 0237 

-0 0031 
-0.0008 
0 0127 

-0.0004 
0.0070 
0.0104 
0 .'0004 

-0.0219 
0.0169 

-0.0048 
0.0083 
0.0034 
0.0118 
0.0086 
0.0027 

-0.0020 
-0.0097 

-0 0037 

31 

0.0112 
0.0133 
0 0023 

-0.0112 
-0.0120 
-0.0010 
0.0000 
0.0036 

-0.0068 
0.0162 

-0.0015 
-0.0012 
-0 0107 
-0.0063 
-0.0006 
0.0075 
0.0000 
0.0054 

-0.0095 
-0.0161 

-0.0076 
-0.0024 
0.0035 
0.0015 
0.0034 

-0.0022 

0.0431 

0 0068 

0.0415 

0.3693 

0.3716 



TABLE 3 

OCEAN SOLUTION BASED ON LEVITUS SST (SET3) 

MAXIMUM DEGREE OF EXPANSION = 36 
NUMBER OF UNKNOWNS = 1369 
RECIPROCAL CONDITION NUMBER 0.134E-08 
DETERMINANT = 4.054*10.0**4635 

NUMBER OF SST VALUES USED = 301153 
DEGREES OF FREEDOM = 28784 
RMS FIT TO LEVITUS DATA = 0.01M 

N M 

0 0 
1 0 
1 1 
2. 0 
2 1 
2 2 
3 0 
3 1 
3 2 
3 3 
4 0 
4 1 
4 2 
4 3 
4 4 
5 0 
5 1 
5 2 
5 3 
5 4 
5 5 
6 0 
6 1 
6 2 
6 3 
6 4 
6 5 
6 6 
7 0 
7 1 
7 2 
7 3 
7 4 
7 5 
7 6 
7 7 
8 0 
8 1 
8 2 

CNM 

0.4001 
0.1977 
0.5125 

-0.8731 
0 2576 
0.5136 

-0.2745 
-0.6562 
0.5007 
0.1390 
0.2345 

-0.7600 
-0.2409 
0.3914 

-0.0454 
0.5592 

-0.1638 
-0.8214 
0.0373 

-0.0193 
0.0542 
0.4162 
0.6958 

-0.5612 
-0.4293 
-0.1661 
-0.0503 
0.0519 

-0.1648 
0.7265 
0.2571 

-0.2878 
-0.2723 
-0.1121 
-0.1660 
-0.1561 
-0.2928 
0.2805 
0.5813 

SNM 

0.0000 
0.0000 
0.2180 
0.0000 
0.3219 
0.2426 
0.0000 
0.0622 
0.2407 
0.5673 
0.0000 

-0.2719 
-0.2406 
0.4806 
0.7370 
0.0000 

-0.0862 
-0.6589 
-0.1841 
0.5244 
0.5468 
0.0000 
0.1800 

-0.4501 
-0.6732 
-0.0907 
0.3137 
0.2179 
0.0000 
0.2884 
0.2226 

-0.4265 
-0.4710 
-0.1273 
0.2696 

-0.0255 
0.0000 

-0.0760 
0.3121 

SN 

0.4001 
0.5910 

1.1202 

1.0768 

1.3236 

1.4382 

1.4254 

1.2118 

SN(CUM) 

0.4801 
0.7137 

1.3283 

1.7099 

2.1623 

2.5969 
- 

2.9624 

3.2007 

1.1260 3.3930 

32 



I 
I 
I 
I 
I 
1 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

8 3 
8 4 
8 5 
8 6 
8 7 
8 8 
9 0 '  
9 1 
9 2 
9 3 
9 4 
9 5 
9 6 
9 7 
9 8 
9 9 

10 0 
10 1 
10 2. 
10 3 
10 4 
10 5 
10 6 
10 7 
10 8 
10 9 
10 10 
11 0 
11 1 
11 2 
11 3 
11 4 
11 5 
11 6 
11 7 
11 8 
11 9 
11 10 
11 11 
12 0 
12 1 
12 2 
12 3 
12 4 
12 5 
12 6 
12 7 
12 8 
12 9 
12 10 
12 11 
12 12 
13 0 
13 1 
13 2 
13 3 
13 4 
13 5 
13 6 
13 7 

0.0837 
-0.0954 
-0.0331 
-0.0 247 
-0.3193 
-0.2158 
-0.2322 
-0.3324 
0.3492 
0 A281 
0 a1157 

-0 0037 
0.2248 

-0.1672 
-0.0331 
-0.1213 
0.1158 

-0.2882 
-0.1185 
-0.1696 
0.1137 

-0.0517 
0.2827 

-0.0207 
0.0746 
0.1409 

-0.0488 
0.1773 

-0.0220 
-0.2388 
-0.2535 
-0.0712 
-0.0541 
0.2354 
0.1608 

-0.0430 
0.2526 

-0.0344 
0.0947 

-0.2445 
0.3974 

-0.0178 
-0.1595 
-0.0821 
-0.0276 
0.0632 
0.4752 
0.0126 
0.0874 

-0.1428 
-0.0543 
0.1495 

-0.5600 
-0.1256 
0.3153 
0.2417 

0.0708 
-0.2434 
0.3933 

o .it325 

0 0998 
-0.5187 
-0.4279 

0.1606 
-0.0902 
0.0000 1.0952 

0.0838 
0.4949 

0 0079 

-0 0399 

-0 3580 
-0 5554 
-0.2888 
0.0939 
0.0494 
0.0640 
0.0000 1.0206 

-0.0943 
-0.358'7 
0.5589 

-0.4036 
-0.3418 
-0.1467 

0.0492 
0.1429 
0.0000 0.7927 
0.0910 

-0 2856 
0.1834 
0.3351 

-0.1418 
-0.1409 
-0.1739 
-0.0254 
-0.0248 

0 0414 

-0 0531 

-0 0478 

0 0255 
0.0000 0.8285 
0.0672 

-0 a 4 7  
-0.1500 

0.2169 

0.0615 
-0.1290 
-0.0288 
-0.0360 

0 1711 

0 0824 

-0 0702 
-0 0374 
0.0000 1.0991 

-0.0220 
0.4347 
0.1112 

-0.1929 
0.0587 
0.1462 
0 0389 
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3.5653 

3.7085 

3.7923 

c 

3.8818 

4.0344 



13 8 
13 9 
13 10 
13 11 
13 12 
13 13 
14 0 
14 1 
14 2 
14 3 
14 4 
14 5 
14 6 
14 7 
14 8 
14 9 
14 10 
14 11 
14 12 
14 13 

15 0 
15 1 
15 2 
15 3 
15 4 
15 5 
15 6 

14 14 

15 7 
15 8 
15 9 
15 10 
15 11 
15 12 
15 13 
15 14 
15 15 
16 0 
16 1 
16 2 
16 3 
16 4 
16 5 
16 6 
16 7 
16 8 
16 9 
16 10 
16 11 
16 12 
16 13 
16 14 
16 15 
16 16 
17 0 
17 1 
17 2 
17 3 
17 4 
17 5 

0.3083 
0.0619 

-0.1814 
-0.1608 
0.0799 

-0.0483 
-0.1410 
-0.7008 
0.2002 
0.2795 
0.4308 
0.3277 

-0.2647 
-0.1052 
0.2948 
0.2235 

-0.1484 
-0.0873 
0.2035 

-0.0326 
-0.2012 
0.7690 

-0.6433 
-0.2020 
0.2248 
0.4069 
0.3853 
0.0537 

-0.2872 
-0.0886 
0.1667 

-0.0156 
-0.1083 
0.4128 
0.0527 

-0.2127 
-0.1377 
0.9291 
0.3775 

-0.3550 
-0.1938 
0.2094 
0.0596 
0.1954 
0.0950 

-0.1285 
-0.1578 
0.1658 

-0.2397 
0.3792 
0.2557 

-0.2179 
-0.1642 
-0.0231 
0.1095 
0.8762 
0.0390 

-0.2581 
0.1009 

-0.2689 

0.0020 
0.0068 

-0.0349 
-0.1641 
0.0889 

-0.0261 
0.0000 1.4896 

-0.1921 
0.1863 
0.7613 
0.0627 

-0.2956 
-0.0425 
-0.2020 
-0.0513 
0.1067 
0.0308 

-0.3348 
0.0788 
0.2180 

-0.0102 
0.0000 1.8346 

-0.1638 
-0.2195 
0.5732 
0.6615 

-0.2367 
-0.3320 
-0.3256 
-0.3603 
0.1460 
0.2967 

-0.2750 
-0.2692 
0.2832 
0.0514 

0.0000 
0.0953 

-0.6428 
-0.3851 
0.5918 
0.3261 

-0.2185 
-0.4780 
-0.0679 
0.4254 
0.1705 

-0.3115 
0.0518 
0.0050 

-0.1460 
0 0295 
0.0000 
0.1793 
0.0258 

-1.0306 
-0.4557 
0.4943 

0.0382 

-0.3998 

I 4.3006 

4.6755 I 

5.0334 - 1.8639 

1 8368 5.3581 
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I 
I 
I 
I 
I 
1 
I 
1 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
I 

17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
19 
20 
20 
20 
20 
20 
20 
20 
20 
20 

__ 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
0 
1 
2 
3 
4 
5 
6 
7 
8 

-0.2565 
0.2932 
0.3655 

-0.2050 
0.1640 

-0.0972 
-0.0107 
0.3555 

-0.1302 
-0.1085 
-0.1207 
0.0193 

-0.6225 
0.3064 
0.3324 

-0.2019 
-0.0111 
-0.0045 
-0.7297 
-0.1099 
0.5869 
0.1866 
0.0412 
0.2244 

-0.2985 
0.0776 
0.0177 
0.0972 

-0.0402 
-0.1542 
0.0037 

-0.5070 
-0.4179 
-0.0305 
0.1781 

-0.1571 
0.4320 

-0.4774 
-0.5405 
0.1165 
0.4289 
0.0372 
0.3434 

-0.1397 
-0.2519 
-0.1024 
0.1987 
0.2763 

-0.1296 
-0.0447 
-0.0282 
-0.0154 
-0.2340 
-0.4790 
0.0927 

-0.2966 
0.3525 
0.1592 

-0.3299 
-0.3663 

-0.0833 
-0.0427 
-0.1353 
-0 1947 
0.1408 
0.4322 
0.0441 

-0.0294 
-0.0130 
-0.2368 
-0.1579 
-0.0853 
0.0000 1.9150 

-0.1169 
0.4849 

-0.5177 
-1.0085 
-0 0263 
0.2449 
0.1858 
0.2296 
0.1515 

-0.1700 
0.1535 
0.2054 
0.1253 

-0.0849 
-0.1960 
-0.1821 
-0.1859 
0.0000 1.8826 

-0.5446 
0.4559 
0.2104 
-0: 5355 
-0.4193 
0.2101 
0.4441 
0.2386 
0.5291 
0.0261 

-0.2393 
-0.0169 
0.1007 
0.0635 
0.0111 
0.1004 

-0.2036 
-0.2466 
-0.1690 
0.0000 

-0.2969 
-0.1831 
0.2876 
0.2657 

-0.0315 
0.0284 
0.5364 
0.1156 

a. 0027 

1.5007 
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5.6900 

5.9934 

6.1784 



20 9 
20 10 
20 11 
20 12 
20 13 
20 14 
20 15 
20 16 
20 17 
20 18 
20 19 
20 20 
21 0 
21 1 
21 2 
21 3 
21 4 
21 5 
21 6 
21 7 
21 8 
21 9 
21 10 
21 11 
21 12 
21 13 
21 14 
21 15 
21 16 
21 17 
21 18 
21 19 
21 20 
21 21 
22 0 
22 1 
22 2 
22 3 
22 4 
22 5 
22 6 
22 7 
22 8 
22 9 
22 10 
22 11 
22 12 
22 13 
22 14 
22 15 
22 16 
22 17 
22 18 
22 19 
22 20 
22 21 
22 22 
23 0 
23 1 
23 2 

0.1915 
0.0745 
0.2360 
0.0684 

-0.1757 
-0.2916 
-0.0028 
0.3434 
0.0573 

-0.0173 
0.1269 

-0.0197 
-0.0506 
0.3113 

-0.3128 
-0.0330 
-0.2236 
-0.1674 
0.2559 
0.1617 

-0.2455 
-0.1385 
0.0369 
0.1215 
0.0023 
0.0042 

-0.0649 
-0.2765 
0.0871 
0.0531 
0.0201’ 
0.2185 
0.1767 
0.0383 

-0.3011 
0.2021 
0.3493 

-0.1659 
-0.0438 
-0.3548 
-0.1164 
0.1585 
0.1650 

-0.1728 
0.0350 
0.0187 

-0.1310 
-0.1998 
0.3242 

-0.17 58 

-0.0982 
-0.0320 
0.1464 
0.2688 
0.1511 
0.0990 

-0.2809 
-0 3785 
0.4915 

-0 1564 

0.2489 
0.4198 

-0.1674 
-0.1649 
-0.1657 
0.1075 

-0.0265 
0.2648 
0.0522 

-0.2859 
-0.2238 
-0.0805 
0.0000 
0.1982 

-0.0442 
-0.1167 
0.1842 
0.4714 
0.0690 
0.4334 
0.1342 

-0.3629 
0.2896 
0.1661 
0.0585 

-0.2318 
0.0004 
0.0027 
0.0736 
0.2914 

-0.1468 
-0.2296 
-0.1771 
-0.0153 
0.0000 
0.4811 
0.3100 
0.0245 

-0.3037 
0.3600 
0.1537 
0.2818 
0.2267 

-0.5124 
-0.2220 
0.1917 
0.3783 

-0.0244 
-0.1162 
0.0940 

-0.1267 
0.1015 
0.1043 

-0.0724 
-0.1141 
-0.1479 
-0.0147 
0.0000 
0.1171 
0.3714 

1.2860 

1 
1 
1 
1 

6.3108 

1.4688 

1.5811 

6.4795 

6.6696 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 

23 3 
23 4 
23 5 
23 6 
23 7 
23 ~ 8 
23 9 
23 10 
23 11 ' 

23 12 
23 13 
23 14 
23 15 
23 16 
23 17 
23 18 
23 19 
23 20 
23 21 
23 22 
23 23 
24 0' 
24 1 
24 2 
24 ' 3  
24 4 
24 5 
24 6 
24 7 
24 8 
24 9 
24 10 
24 11 
24 12 
24 13 
24 14 
24 15 
24 16 
24 17 
24 18 
24 19 
24 20 
24 21 
24 22 
24 23 
24 24 
25 0 
25 1 
25 2 
25 3 
25 4 
25 5 
25 6 
25 7 
25 8 
25 9 
25 10 
25 11 
25 12 
25 13 

0.1466 
0.0901 

-0.1810 
-0.1341 
-0.2452 
0.2589 

-0.0559 
0.1196 

-0.0468 
-0.1149 
-0.5706 
0.2535 
0.2228 

-0.1771 
-0.1327 
-0.0848 
0.0776 
0.0855 
0.2091 
0.1382 
0.1117 
0.2486 

-0.6420 
0.1597 
0.1965 
0.0956 

-0.0469 
0.2995 

-0 2988 
0.0025 

-0.0825 
0.1499 

-0.0727 
-0.0736 
-0.5923 
-0.1742 
0.3892 

-0.0263 
-0.0424 
-0.0240 
0.0722 

-0.0665 
0.0156 
0.1968 
0.1304 
0.0680 
0.5157 

-0.2138 
-0.1969 
0.1790 
0.0627 

-0.2004 
0.4424 
0.1613 

-0.1657 
-0.2567 
0.0044 

-0.1139 
-0.1431 
-0.2887 
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.O. 4822 
-0.4813 
-0.2101 
-0.0585 
0.1594 
0.2051 

-0.2085 
-0.3113 
-0.0267 
0.3894 
0 1943 

-0 1839 
0.1156 

-0.0941 
-0.2160 
0.0515 
0.1527 
0.0779 

-0.0850 
-0.0827 
-0.0383 
0.0000 

-0.0801 
-0.2219 
0.5273 

-0.0175 
-0.4681 
-0.4444 
0.0148 
0.1241 
0.0055 
0.0581 
0.0280 
0.1262 
0.2163 

-0.2858 
0.0256 
0.0348 

-0.2438 
-0.2021 
0.1649 
0.2193 
0.0473 

-0.0472 
0.0048 

-0.0381 
0.0000 

-0.0957 
-0.4966 
-0.0886 
0.2963 

-0.2646 
-0.5225 
-0.0811 
0.1256 

-0.0187 
0.2284 
0.3629 

-0.0570 
0.0510 

1.5724 

1.5372 

6 8525 

7 022-8 



25 14 
25 15 
25 16 
25 17 
25 18 
25 19 
25 20 
.25 21 
25 22 
25 23 
25 24 
25 25 
26 0 
26 1 
26 2 
26 3 
26 4 
26 5 
26 6 
26. 7 
26 8 
26 9 
26 10 
26 11 

26 13 
26 14 
26 15 
26 16 
26 17 
26 18 
26 19 
26 20 
26 21 
26 22 
26 23 
26 24 
26 25 
26 26 
27 0 
27 1 
27 2 
27 3 
27 4 
27 5 
27 6 
27 7 
27 8 
27 9 
27 10 
27 11 
27 12 
27 13 
27 14 
27 15 
27 16 
27 17 
27 18 
27 19 
27 20 

26 12 . 

-0.3337 
0.2658 
0.0894 
0.0226 
0.0822 
0.1117 

-0.0602 
-0.2069 
0.0928 
0.1769 
0.1164 
0.0221 
0.4152 
0.2210 

-0.1114 
0.0728 
0.0168 

-0.2602 
0.1186 
0.4793 

-0.0516 
-0.3654 
-0.2097 
-0.1521 
-0.2874 
-0.0436 
-0.1141 
0.2269 
0.0800 
0.0130 
0.0918 
0.1329 

-0.0135 
-0.2260 
-0.0997 
0.1319 
0.1075 

. 0.0919 
0.0082 
0.0398 
0.2916 

-0.0425 
0.1574 

-0.0154 

-0.2509 
0.3366 
0.0828 

-0.2870 
-0.3403 
-0.1134 
-0.3522 
-0.0006 
0.1130 
0.3501 
0.0912 

-0.0565 
0.0488 
0.0644 
0.0161 

-0.1782 

-0.3871 
-0.1470 

-0.0725 
-0.2033 
-0.0001 
0.2150 
0.0582 

-0.0041 
0.0499 
0.0596 

-0.0090 
0.0000 
0 0444 

-0 2983 
-0.5555 
0.2596 
0.0637 

-0.2616 
-0.0431 
0.2451 

-0.0136 
-0.0096 
0.4593 

-0.0420 
-0.1694 
-0.3842 
-0.2773 
0.1306 
0.0596 

0 1171 

0 0089 
-0 0409 
0.1115 
0.0160 

-0.0629 
0.0290 
0.1094 
0.0622 
0.0260 
0.0000 
0.0135 
0.0866 

-0.5089 
0.0440 
0.1167 
0.0329 
0.0737 
0.3573 
0.1286 

-0.2360 
0.1681 

-0.0206 
-0.2792 
-0.3084 
-0.2544 
0.1454 
0.0919 
0.0932 
0.0799 
0.0381 

I 
1 
1 
1 
I 
I 

1.4691 7.1748 

1.3016 7.2919 
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I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 

27 21 
27 22 
27 23 
27 24 
27 25 
27 26 
27 27 
28 0 
28 1 
28 2 
28 3 
28 4 
28 5 
28 6 
28 7 
28 8 
28 9 
28 10 
28 11 
28 12 
28 13 
28 14 
28 15 
28 1 6  
28 17 
28 18 
28 19 
28 20 
28 21 
28 22 
28 23 
28 24 
28 25 
28 26 
28 27 
28 28 
29 0 
29 1 
29 2 
29 3 
29 4 
29 5 
29 6 
29 7 
29 8 
29 9 
29 10 
29 11 , 

29 12 
29 13 
29 14 
29 15 
29 16 
29 17 
29 18 
29 19 
29 20 
29 21 
29 22 
29 23 

-0.1341 
-0.1218 
0.0120 
0.0663 
0.0504 
0.0584 
0.0177 

-0.0 362 
0.0770 

-0.0901 
0.1162 

-0.0861 
-0.0637 
-0.2935 
0.0615 
0.0161 

-0.1522 
-0.3155 
-0.0143 
-0.2344 
-0.0100 
0.1624 
0.3693 
0.1819 

.-0.1472 
-0.0051 
-0.0005 
-0.0063 
-0.0733 
-0.0205 
-0.0015 
0.0014 

-0.0004 
0.0188 
0.0236 
0 A217 

-0.0284 
0.0628 

-0.2552 
0.0341 

-0.1302 
-0.1254 
-0.2003 
-0.0165 
-0.0991 
-0.1163 
-0.2020 
0.0564 

-0.0171 
0.0364 
0.1558 
0.2212 
0.2052 

-0.1655 
-0.0743 
-0.0064 
-0.0396 
-0.0520 
0.0255 
0.0707 

-0.0209 
-0.1206 
-0 0229 
0.0569 
0.1001 
0.0413 
0.0418 
0.0000 
0.0570 
0.1577 

-0.2021 
0.1189 
0.0497 
0.1102 
0.1103 
0.3161 
0.2280 

-0.2205 
-0.1361 
-0.1160 
-0.2827 
-0.2039 
-0.1252 
0.1998 
0.1124 
0.0191 
0.1089 
0.0525 

-0.0462 
-0.1019 
-0.0499 
0.0176 
0.0502 
0.0732 
0.0304 
0.0294 
0.0000 
0.1218 
0 a 0 5  

-0.1249 
0.2493 
0.0638 
0.0671 
0.0762 
0.1655 
0 J615 

-0.1457 
-0.2045 
-0.1806 
-0.2522 
-0.0762 
-0.0017 
0.2360 
0.1651 

-0.0575 
0.0062 
0.0559 

-0.0381 

-0.0249 
-0.0824 
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1.0513 

0.9017 

7.3673 

7.4222 



29 
29 
29 
29 
29 
29 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 

24 
25 
26 
27 
28 
29 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

-0.0174 
-0.0186 
-0.0151 
-0.0036 
-0.0032 
0.0130 

-0.0095 
0.1428 

-0.2071 
-0.1019 
-0.1168 
-0.2072 
-0.1509 
0.0220 

-0.0605 
-0.1313 
-0.1065 
0.0747 
0 ~ 1 5 3  
0.0888 
0.1732 
0.0697 
0.1023 

-0.1228 
-0.1224 
0.0085 

-0.0153 
-0.0454 
0.0091 
0.0978 
0.0171 

-0.0349 
-0.0053 
-0.0066 
-0.0127 
-0.0114 
-0.0023 
-0.1259 
0.1699 

-0.0818 
-0.1381 
-0.0461 
-0.2242 
-0.1562 
0.0130 
0.0711 

-0.0846 
-0.0519 
0.0638 
0.1207 
0.0684 
0.1582 
0.0145 

-0.0093 
-0.0815 
-0.1024 

0.0250 
-0.0156 
-0.0134 
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0.0122 
-0.0014 
0.0370 
0.0475 
0.0298 
0.0098 
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0.1920 
0.0990 

-0.2037 
0.2189 
0.1596 
0.0359 
0.0233 
0.0509 
0.0288 

-0.1365 
-0.1507 
-0.1127 
-0.1966 
0.0094 
0.0746 
0 .I920 
0.1780 

-0.0638 
-0.0808 
0.0073 

-0.0057 
-0.0729 
0.0024 
0.0316 

-0.0063 
-0.0200 
0.0295 
0.0260 
0.0272 
0.0008 
0.0000 0.6787 
0.1561 
0.1606 

-0.2381 
0.0074 
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0.0506 

-0.0028 
0.0189 

-0.0269 
-0.1370 
-0.1228 
0.0011 

-0.0947 
0.0297 
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0.1022 
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-0.0443 
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31 29 
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31 31 
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32 7 
32 8 
32 9 
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32 22 
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32 31 
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33 8 
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33 10 
33 11 
33 12 
33 13 
33 14 
33 15 
33 16 
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0.0613 
0.0355 

-0.0358 
-0.0102 
0.0090 

-0.0017 
-0.0139 
-0.0074 
-0.0097 
-0.1394 
0.0499 
0.0572 

-0.1326 
0.0167 

-0.1442 
-0.1175 
-0.0458 
0.1150 
0.0077 

-0 0118 
0.0471 
0.0903 
0.0074 
0.0837 
0.0160 

-0.0545 
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0.0196 
0.0344 
0.0142 

-0.0150 
0.0228 
0.0253 

-0.0203 
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0.0106 
0.0110 

-0.0014 
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-0.0055 
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-0.1015 
-0.0346 

-0.0598 

0.0717 
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0.0438 

-0.0690 
-0.0556 
-0.0699 
0.0626 
0.0469 
0.0176 
0.0271 
0.0667 

-0.0188 
0.0061 
0.0151 

-0.0448 
-0.0397 

-0.0095 
0.0514 
0.0107 

-0.0286 
-0.0169 
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0.1696 

-0.1417 
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-0.0149 
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0.0444 
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0.0986 
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-0.0398 
-0.0639 
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0.0152 
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0.0347 
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-0,0150 
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0.0059 
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0.0044 
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-0.0010 
0.1148 

-0.0469 
-0.0979 
-0.0583 
0.0191 

-0.0077 
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0.0211 
0.0390 
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0.0274 
0.0254 
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-0.0075 
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-0.0007 
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0.0055 
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-0.0022 
-0.0024 
0 0006 
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0.0196 
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0.0234 
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0.0065 

-0.0123 
-0.0012 

0.0189 
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-0.0372 
-0.0031 
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-0.0033 
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0.0002 
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0.0045 
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